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Abstract

Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide 

nanoparticles with different redox potentials according to their semiconductor properties. By 

utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle’s 

mode of toxicological action is related to their physio-chemical properties in human small airway 

epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and 

alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following 

exposure to CoO and La2O3 (administered doses: 0, 5, 25, and 50 μg/ml) nanoparticles. CoO 

nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the 

nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3 

nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 μg/ml 

administered doses, whereas, La2O3 nanoparticles were toxic only after 24 h using the same 

administered doses. Based upon the Volumetric Centrifugation Method in vivo Sedimentation, 

Diffusion, and Dosimetry, the dose of CoO and La2O3 nanoparticles delivered at 6 and 24 h were 

determined to be: CoO: 1.25, 6.25, and 12.5 μg/ml; La2O3: 5, 25, and 50 μg/ml and CoO: 4, 20, 

and 40 μg/ml; and La2O3: 5, 25, 50 μg/ml, respectively. CoO nanoparticles produced more 

superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation 

at both 6 and 24 h when compared with La2O3 nanoparticles. Taken together, these data provide 

evidence that different toxicological modes of action were involved in CoO and La2O3 metal oxide 

nanoparticle-induced cellular toxicity.
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It has been hypothesized that the toxicity of a nanomaterial is largely due to their 

physicochemical properties, such as: size, morphology, oxidant generation, surface 

functionalization, and rate of dissolution (Castranova 2011; Sarkar et al., 2014). The specific 

properties of a nanomaterial allow them to cross the cell membrane both in vitro and in vivo 
leading to the alteration of cell physiology, resulting in cytotoxicity (Castranova 2011; 

Cohen et al., 2014a; Jeng and Swanson, 2006; Katsnelson et al., 2015; Konduru et al., 2014; 

Nel et al., 2006; Roy et al., 2014; Zhou et al., 2014). Metal oxide nanoparticles are unique in 

their catalytic activities for redox reactions, which are correlated to their abilities to induce 

oxygen radicals (Nel et al., 2006). Moreover, published data have shown that metal oxide 

nanoparticles have the ability to induce the production of reactive oxygen species (ROS) and 

affect the expression of antioxidant protein and enzymes of the defense systems both in vitro 
and in vivo resulting in oxidative stress. Oxidative stress can lead to cytotoxicity, 

inflammation, and fibrosis both in vitro and in vivo (Schrand et al., 2010; Xie et al., 2011; 

Zhang et al., 2012).

Other unique properties of metal oxide nanoparticles are their mechanical, electrical, and 

optical properties. Some metal oxide nanomaterials have the ability to be a semiconducting 

material and can serve as conduits for electron transfer between aqueous reactants. Studies 

have shown that these semiconducting properties may be responsible for generating adverse 

health effects (Antonini et al., 1996; McNeilly et al., 2004). The electrons transferred 

between metal oxide nanoparticles and aqueous reactants depend on similarities in the 

energetic states of both the metal oxide nanoparticles and the ambient redox-active aqueous 

substances (Nel et al., 2006). Through the evaluation of metal oxide nanoparticles, Dr. Nel’s 

group predicted that if the conduction band energy overlapped with that of the redox 

potential of the cell, then the metal oxide nanoparticle would produce superoxide radicals 

and cause cytotoxicity (Kaweeteerawat et al., 2015; Zhang et al., 2012). The relevant energy 

levels for metal oxide nanoparticles are from the top of the valence band (Ev) to the bottom 

of the conduction band (Ec). The relevant energy level for aqueous substances is their 

standard redox potential (E0) (Nel et al., 2006; Zhang et al., 2012). The relative energetics of 

Ev or Ec versus E0 would determine the feasibility of electrons to be transferred between the 

semiconductor and redox-active bystanders (Nel et al., 2006; Zhang et al., 2012). The 

permissive electron transfer between the particle surfaces and the cellular redox couples 

would occur if an overlap exists between Ec and E0, which would lead to formation of 

oxidizing or reducing substances that decrease anti-oxidant levels, increase production of 

ROS and/or oxidized biological materials (Burello and Worth, 2011a,b). In contrast, if an 

energetic band gap exists between Ev and Ec versus E0, no permissive electron transfer 

could occur, and consequently, less oxidative stress would be induced. Dr. Nel’s group 

investigated 24 metal oxide nanoparticles for their toxicological potential according to their 

conduction band energy levels. Among them, Cobalt monoxide (CoO) nanoparticles have a 

potential overlap of Ec with the cellular redox interval and are therefore predicted to have 

electrons transferred between CoO nanoparticles and cellular redox couples to induce 
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oxygen radicals and oxidative stress, leading to cellular toxicity. On the contrary, lanthanum 

oxide (La2O3) nanoparticles do not have a potential overlap of Ec with cellular redox 

interval and thus are predicted to be weak in inducing of oxygen radicals and oxidative 

stress. Indeed, their whole animal and cellular studies showed that a correlation exists 

between their redox-related toxicity and conduction band energy (Zhang et al., 2012). 

Therefore, the toxicological mode of action between CoO nanoparticles and La2O3 

nanoparticles could be fundamentally different.

The cytotoxicity of CoO nanoparticles has been demonstrated in a number of physiological 

relevant in vitro models. CoO nanoparticles were considered to be cytotoxic in human 

lymphocytes by inducing ROS, by the dissolution of Co++ from CoO nanoparticles 

(Chattopadhyay et al., 2015). Chattopadhyay et al. also showed that CoO nanoparticles in 

vivo are cytotoxic through inducing oxidative stress (Chattopadhyay et al., 2015). A gene 

expression study showed that CoO nanoparticles have the ability to induce inflammation and 

cytotoxicity in alveolar A549 and bronchial BEAS-2B epithelial cells (Verstraelen et al., 
2014); however, the gene expression profile is different between the two in vitro lung 

epithelial cell lines suggesting the signaling cascades to cause an inflammatory response and 

cytotoxicity could be slightly different. Others have looked at the cytotoxicity of La2O3 

nanoparticles within RAW264.7 cells and A549 cells and determined that with increasing 

amounts of La2O3 nanoparticles and increased incubation time, La2O3 nanoparticles become 

more cytotoxic and that the size of the La2O3 particles plays a large role in cytotoxicity 

(Lim, 2015).

This study sought to determine how the mode of toxicological action is related to physio-

chemical properties of nanoparticles. CoO and La2O3 nanoparticles were analyzed to 

compare their bioactivity and toxicity in human small airway epithelial cells (SAEC), as 

well as, the cellular ROS levels induced following exposure. Furthermore, we determined 

whether different molecular signaling were involved in CoO and La2O3 nanoparticle-

induced toxicity.

MATERIALS AND METHODS

Source and characterization of metal oxide nanoparticles

The CoO nanoparticles were purchased from SkySpring Nanomaterials (Houston, Texas) 

(Catalogue Number: 2310SC) and La2O3 nanoparticles were purchased from 

Nanostructured & Amorphous Materials, Inc (Houston, Texas) (Catalog Number: 2920RE).

Specific surface areas of CoO and La2O3 nanoparticles determined by the Brunauer–

Emmett–Teller method (Quantachrome, Boynton Beach, Florida) were 18.34 and 6.87 m2/g, 

respectively. The equivalent primary particle diameter of each metal oxide was subsequently 

estimated by transmission electron microscopy (TEM) to be 53.55 nm for CoO nanoparticles 

and 134.22 nm for La2O3 nanoparticles. TEM images of the CoO and La2O3 nanoparticle 

powder can be found in Supplementary Figure 1.
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CoO and La2O3 nanoparticles suspension preparation and characterization

Particle dispersions were prepared following a previously published protocol (Ametamey et 
al., 1996; Cohen et al., 2013). In summary, the powders were suspended in dispersion media 

(DM) containing: 0.6 mg/ml bovine serum albumin (BSA), 100 μg/ ml DPPC, 0.55M 

Glucose in phosphate-buffered saline and sonicated to their determined critical delivered 

sonication energy (CoO nanoparticles: 268 J/ml, La2O3 nanoparticles: 371.85 J/ml). 

Subsequently, the particle suspensions were diluted in SAEC basal culture medium (SABM) 

and characterized for intensity-weighted hydrodynamic diameter (dH), polydispersity index 

(PdI), zeta potential (ζ), and specific conductance (σ) by dynamic light scattering (DLS) 

following the protocol described in Cohen et al., 2013. The effective density (ρagg) of the 

formed agglomerates, which plays an important role in the settling and dosimetry in vitro, 

was also measured using the recently developed Volumetric Centrifugation Method (VCM) 

(DeLoid et al., 2014).

Dosimetric considerations for in vitro testing

The conversion of the administered and delivered in vitro doses was done following the 

hybrid VCM-in vivo Sedimentation, Diffusion and Dosimetry (VCM-ISDD) dosimetry 

methodology recently published by the authors (Cohen et al., 2014b; DeLoid et al., 2014; 

Pal et al., 2015). This 2-step integrated dosimetric approach enables the calculation of the 

fraction of administered particles deposited on the cells (fD) in a standard 6- and 96-well 

plate as a function of in vitro exposure duration. Subsequently, the average hydrodynamic 

diameter, dH, measured by DLS, and the VCM-measured effective density (DeLoid et al., 
2014) of the formed agglomerate were used as input to the VCM-ISDD fate and transport 

numerical model to calculate the fD as a function of the 24-h exposure duration. Further, to 

allow for the accurate estimation of the delivered to cell dose metrics (mass, particle number, 

total surface) as a function of time, the Relevant in vitro Dosimetry (RID) functions were 

calculated for both particle suspension in a 6- and 96-well plate experimental condition as 

described in Cohen et al. (2014b). In brief, the RID functions were derived from the total 

mass administered (M), total surface area dose (SA), and total particle number dose (N) by 

using the equations 1 through 3, as follows:

1 M = γ × V; where M (μg) is the total mass dose, V is the volume of exposure 

media (ml) applied directly to the cells in culture and γ (μg/ml) is the mass 

concentration of the ENM suspension.

2
; where N (#) is the total particle number dose, rH (cm) is the 

hydrodynamic radius, and ρE, (g/cm3) is the agglomerate effective density.

3
: where SA (cm2) is the total surface area dose.

Once these three metrics have been calculated, the RID functions for delivered dose metrics 

can now be computed using equations 4 through 6 and using as input the material-media 

specific parameters obtained from the fate and transport algorithm (α, deposition constant 

and t, exposure duration), as follows:

4 Delivered to cell mass (RIDM, μg): RIDM = (1 − e−αt) × M
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5 Delivered to cell particle number (RIDN, number of particles): RIDN = (1 − e−αt) 

× N

6 Delivered to cell surface area (RIDSA, cm2): RIDSA = (1 − e−αt) × SA

Cell culture

SAEC were a gift from by Dr Tom K. Hei at Columbia University (New York) and were 

maintained as previously described (Piao et al., 2005). The SAEC were maintained in serum 

free SABM with the following supplemental growth factors (Bovine Pituitary Extract, 

Hydrocortisone, Human Epidermal Growth Factor, Epinephrine, Transferrin, Insulin, 

Retinoic, Triiodothyronine, Gentimicin Amphoteracin-B, and BSA-fatty acid free) provided 

by the manufacturer (Lonza Inc., Allendale, New Jersey). For each experiment, SAEC were 

plated at the appropriate density and allowed to fully attach for 24 h, after which the medium 

was changed to dispose of dead cells. After 48 h, the SAEC were given SABM media free of 

the supplemental growth factors for 24 h and treated with DM, CoO, or La2O3 nanoparticles 

for either 6 or 24 h.

Transmission electron microscopy

After SAEC were dosed with CoO or La2O3 nanoparticles at 0.0, 5.0, 25, or 50 μg/ml for 

either 6 or 24 h, the cells were trypsinized and centrifuged at 1500 × g for 5 min at room 

temperature and then fixed with Karnovsky’s fixative (2.5% glutaldehyde, 2.5% 

paraformaldehyde in 0.1 M Sodium Cacodylic buffer). The samples were postfixed in 

osmium tetroxide, mordanted in 1% tannic acid and stained in bloc in 0.5% uranyl acetate, 

embedded in epon, sectioned, and stained with Reynold’s lead citrate and uranyl acetate. 

Sections were imaged with the JEOL 1220 transmission electron microscope (Tokyo, 

Japan).

Cytotoxicity of CoO and La2O3 nanoparticles

SAEC were plated in a 96-well plate at a density of 1.5 × 104 cells per well (BD 

Biosciences, New Jersey). To determine the changes in cellular proliferation after treatment 

with CoO or La2O3 nanoparticles, the Cell Titer 96 Aqueous One Solution Cell Proliferation 

Assay kit (Promega, Wisconsin) was used, following manufacturer’s guidelines. The 

following concentrations of CoO and La2O3 nanoparticles were used to determine the 

cytotoxicity in the (3-(4,5-dimethylthizaol-2-yl)-5-(3-carboxyme-thoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) assay at 6 or 24 h: 0.0, 5.0, 25, and 50 μg/ml.

ROS produced by CoO and La2O3 nanoparticles

In a 96-well plate, SAEC were plated at 1.5 × 104 cells per well (BD Biosciences). For the 

last 30 min of the 6 or 24 h treatment with DM, CoO or La2O3 nanoparticles, 5 μM 2′,7′-

dichlorofluorescin diacetate (DCFDA) (Invitrogen, New York) in DMSO was added, then 

the plate was read at 492 and 517 nm in a plate reader.

Western blots

Whole cell extracts were gathered from SAEC treated with CoO or La2O3 nanoparticles at 

0.0, 5.0, 25, or 50 μg/ml using RIPA buffer (150 mM NaCl, 10 mM Tris pH 7.4, 2 mM 
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EDTA, 1% IGEPAL, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate) with the 

addition of 10 μg/ml protease inhibitor cocktail and 10 μg/ml phosphatase inhibitor (Thermo 

Fisher Scientific, Pittsburgh, Pennsylvania). Protein concentration was determined using a 

BCA protein assay kit (Thermo Fisher Scientific). 15 μg of protein was run on an sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) gel, transferred onto 

Polyvinylidene fluoride (PVDF) membrane, and blocked with 5% BSA. The membranes 

were probed with total phospho-tyrosine antibody, total phospho-threonine antibody, HIF-1α 

antibody (Cell Signaling Technology, Boston, Massachusetts), or beta actin antibody (Sigma 

Aldrich, St. Louis, Missouri) as an internal control. Membranes were washed with TBS-T 

(62.5 mM Tris pH 7.4, 150 mM NaCl, 0.05% Tween 20) three times and incubated with a 

secondary antibody. Membranes were developed using ECL (Thermo Fisher Scientific).

Gene expression analysis

RNA was extracted from SAEC dosed with CoO or La2O3 nanoparticles at 0.0, 5.0, 25, or 

50 μg/ml for 6 or 24 h using Tri Reagent (Thermo Fisher Scientific) according to 

manufacturer’s guidelines. RNA concentrations were determined using a NanoDrop 1000 

Spectrophotometer (NanoDrop Tech, Germany). Next, 1 μg of protein was used to generate 

cDNA according to manufacturer guidelines in the High Capacity cDNA Reverse 

Transcription Kit (Life Technologies, Grand Island, New York). The cDNA was then used to 

analyze gene expression using TaqMan Universal PCR Master Mix (Life Technologies) 

according to instructions provided by the manufacturer along with the TaqMan Primers (Life 

Technologies) listed in Supplementary Table 1 using the 7500 Real-time PCR System (Life 

Technologies). The following genes were analyzed: B-cell lymphoma 2 (BCL2), tumor 

protein p53 (p53), hypoxia-inducible factor 1-alpha (Hif1α), metallothionein 3 (MT3), nitric 

oxide synthase 1 (NOS1), nitric oxide synthase 2 (NOS2), prostaglandin-endoperoside 

synthase 2 (PTGS2 (Cox2)), superoxide dismutase 1 (SOD1), superoxide dismutase 2 

(SOD2), superoxide dismutase 3 (SOD3), and throredoxin reductase 1 (TXNRD1). Beta 

actin was used as the internal control. Relative gene expression was analyzed using the 

2−ΔΔCT method.

Statistical analysis

Statistical comparisons for the SAEC response to exposure to CoO and La2O3 nanoparticles, 

separately and across three concentrations including DM controls were performed separately 

for each of two exposure times (6 or 24 h) using analysis of variance. Since variance 

estimates were different across treatment groups, the ANOVA models were estimated using 

an unequal variance method available from SAS PROC MIXED (Littell et al., 2002). 

Similarly, comparisons across exposure times for each concentration (0, 5, 25, or 50 μg/ml) 

were performed using unequal variance ANOVA. All statistical tests were 2-tailed with 

significance level equal or less than 0.05.

RESULTS

Nanoparticle Dispersion Characterization in SABM

Table 1 summarizes the particle colloidal properties in the biological media used in the 

study, including the DLS-measured hydrodynamic diameter (dH), zeta potential (ζ), 
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polydispersity index (PdI), and specific conductance (σ). The CoO nanoparticle suspension 

exhibited a dH in SABM of 263.8 nm, whereas La2O3 nanoparticles were determined to 

have a dH of 1591 nm when dispersed in SABM. The PdI values for both suspensions were 

approximately 0.3, which reflects a distribution of monodispersed particles. Observed values 

of zeta potential were strongly negative for both particles suspended in cellular media, with 

negative values as high −9.95 and −48.8 mV for CoO and La2O3 nanoparticles, respectively.

Additionally, the VCM-measured effective density of CoO nanoparticles was 1.55 g/cm3, 

whereas that of the La2O3 nanoparticles was 1.20 g/cm3 when suspended in SABM media 

(Table 1). It is worth noting that both the effective density and hydrodynamic diameter 

(Cohen et al., 2013; DeLoid et al., 2014, No. 430) of formed agglomerates are important 

determinants of fate and transport in the in vitro system and define settling rates and 

dosimetry in vitro.

Dosimetric Considerations for in vitro Testing

The delivered cell dose at a given exposure time point may not always be the same as the 

dose administered (Cohen et al., 2013). The settling rate of the formed agglomerates in vitro 
is defined by two fundamental parameters, the hydrodynamic diameter of the formed 

agglomerate and their effective density (Cohen et al., 2013; DeLoid et al., 2014). Using the 

recently developed Harvard in vitro dosimetry methodology (Cohen et al., 2014b), the 

fraction of the administered particles that deposit on the cells located at the bottom of the 

treatment well as a function of time was calculated and presented in Figure 1. The 

deposition fraction constant (α) as well as the number of hours it will take for 90% of the 

administered dose to deposit (t90) for both particle suspensions is presented in Table 2. The 

La2O3 nanoparticles settled significantly faster than CoO nanoparticles when suspended in 

SABM. More specifically, it took less than 3 h for all of the administered La2O3 

nanoparticle mass to deposit on the cells while approximately 80% of administered CoO 

nanoparticles reached the bottom of the well in 24 h. Table 3 shows the RID functions for 

both particles suspended in media both in a 6- and 96-well plate. It is worth noting that other 

dose metrics beyond delivered mass such as delivered surface and particle number, 

respectively defined by the RIDN and RIDSA might better describe the dose response 

relationships observed here (Oberdorster et al., 2007). Indeed, the RIDN and RIDSA for CoO 

nanoparticles are larger than that for the La2O3 nanoparticles. As mentioned in the Materials 

and Methods section of the manuscript, the dH and the effective density of the particle-media 

agglomerate have an effect on the fate and transport of the particles, consequently affecting 

dosimetry considerations in vitro (ie, RID functions). It is a possible that a larger number of 

CoO particles in addition to a larger CoO nanoparticle surface area allows for more 

interaction to occur between the CoO particles and the treated cells. Thus, increasing the 

adverse response exhibited by the CoO-treated cells when compared with the La2O3-treated 

cells.

Engulfment of CoO and La2O3 Nanoparticles by SAEC

Within this study, it was of importance to determine if SAEC engulfed the nanomaterial. To 

determine this, SAEC were analyzed using TEM after being treated with either CoO or 

La2O3 nanoparticles at 0.0, 5.0, 25.0, 50.0 μg/ml at both 6 and 24 h. Figure 2 demonstrates 
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that CoO and La2O3 nanoparticles were taken up by SAEC at each dose tested, as seen by 

the arrows.

Cytotoxicity of CoO and La2O3 Nanoparticles

It has been demonstrated that metal oxides nanoparticles are toxic (Jeng and Swanson, 2006; 

Schrand et al., 2010). To determine the degree of toxicity of CoO and La2O3 nanoparticles in 

SAEC, we measured cytotoxicity using an MTS Assay after treatment with CoO or La2O3 

nanoparticles at 0.0, 5.0, 25.0, or 50.0 μg/ml for 6 or 24 h. As seen in Figure 3A, CoO 

nanoparticles decreased cell viability as the doses increased at both 6 and 24 h. However, 

La2O3 nanoparticles were only toxic in a dose dependent manner after a 24 h exposure. 

There was no significant toxicity observed after 6 h of treatment with La2O3 at 5.0, 25.0 or 

50 μg/ml. When comparing the toxicity of CoO nanoparticles to that of La2O3 nanoparticles, 

CoO nanoparticles were significantly more toxic both at 25 and 50 μg/ml after 6 h of 

treatment and at 25 μg/ml after 24 h of treatment. There were no changes in toxicity at 5 

μg/ml after 6 or 24 h treatment of CoO or La2O3 nanoparticles. Taken together, these data 

suggest that CoO nanoparticles are more toxic than La2O3 nanoparticles in SAEC after 6 

and 24 h treatment. As seen in Figures 3B and 3C of the slope of each material’s dose 

response graph (−1.7351 for CoO and −0.9018 for La2O3), it can be observed that CoO 

nanoparticles appears to be more toxic than La2O3 nanoparticles in SAEC for the range of 

delivered mass doses. Particularly, at the same delivered doses of 2.5 μg/ml after 24 h 

treatment, it is evident that metabolic activity drops 7 times more after treatment with CoO 

nanoparticles (23.1%) than with La2O3 nanoparticles (3.3%). It is worth noting that the size 

is one of the factors that define the settling rate and the delivered to cell dose as a function of 

exposure time. Based on the dosimetric analysis performed here, it is clear that La2O3 

nanoparticles had a higher delivered dose compared to that of CoO nanoparticles. Despite of 

the fact that La2O3 nanoparticles settled faster than the CoO nanoparticles, the percent 

viability following treatment with CoO decreased at a much higher rate than in cells treated 

with La2O3 nanoparticles, which is indicative of the higher biological reactivity of the CoO 

nanoparticles.

Production of ROS By CoO and La2O3 Nanoparticles

The production of ROS by metal oxide nanoparticles has been well established both in vivo 
and in vitro, and has been shown to play a key role altering cellular signaling cascades 

(Sarkar et al., 2014; Zhang et al., 2012). To determine if either CoO or La2O3 nanoparticles 

produce ROS, SAEC were treated for 6 or 24 h at 0.0, 5.0, 25, or 50 μg/ml of either CoO or 

La2O3 nanoparticles and then treated with 5 μM DCFDA for the last 30 min of exposure. 

DCFDA in the presence of free radicals is oxidized and cleaved of the acetate group to 

become DCF, which produces fluorescence. As seen in Figure 4, cells treated with 25 or 50 

μg/ml of CoO nanoparticles induced more fluorescence in comparison to La2O3 

nanoparticles treated cells at both 6 and 24 h, indicating that CoO nanoparticles produce 

more ROS. However, there was no significant induction of fluorescence in cells treated with 

5.0 μg/ml of either CoO or La2O3 nanoparticles. Moreover, CoO nanoparticles also showed 

a trend of increased super oxide production at increasing doses of nanoparticles; however, 

this observation was not seen in cells treated with La2O3 nanoparticles at either exposure 
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duration. These data suggest that the CoO nanoparticles produce more ROS when compared 

with La2O3 nanoparticles at both 25 and 50 μg/ml after both 6 and 24 h.

Increase in Total Tyrosine and Threonine Phosphorylation

Tyrosine and threonine phosphorylation of proteins is a key step in the activation of cellular 

signaling pathways (Hunter, 1995; Marshall, 1995). Changes in either tyrosine or threonine 

phosphorylation due to nanoparticle exposure can alter the cellular bioactivity on a global 

scale. Whole cell lysates were taken from SAEC treated with either CoO or La2O3 

nanoparticles for 6 or 24 h at 0.0 5.0, 25.0, or 50.0 μg/ml. As can be seen in Figure 5, there 

was increased total tyrosine phosphorylation at all doses of CoO nanoparticles at 6 and 24 h 

compared with La2O3 nanoparticle treated SAEC. There were also increases seen with total 

threonine phosphorylation at 6 h for CoO nanoparticle-treated cells; however, threonine was 

further induced after a 24 h treatment with CoO. There were increases seen at 24 h of total 

threnonine phosphorylation of cells treated with La2O3 nanoparticles; however, induction 

was not as great as that for cells treated with CoO nanoparticles. Taken together, these data 

suggest that the CoO nanoparticles are more bioactive than the La2O3 nanoparticles, causing 

greater changes in total tyrosine and threonine phosphorylation at a both 6 and 24 h at the 

various doses studied.

Alteration in Gene Expression in SAEC Due to CoO and La2O3 Nanoparticles

Given the changes seen in total tyrosine and threonine phosphorylation in SAEC treated 

with either CoO or La2O3 nanoparticles, it was of interest to determine if this translated into 

alterations in gene expression. To determine this, RNA was isolated from SAEC dosed for 6 

or 24 h at 0.0, 5.0, 25.0, and 50.0 μg/ml with either CoO or La2O3 nanoparticles and then 

analyzed for alterations in gene expression relating to either apoptosis or oxidative stress 

(ATK1, BCL2, p53, Hif1α, MT3, NOS1, NOS2, PTGS2 (COX2), SOD1, SOD2, SOD3, and 

TXNRD1). While there were changes seen within the gene expression that related to a dose 

response to either CoO or La2O3 nanoparticles, the data in Figure 6 are only the genes that 

showed a significant differences between CoO and La2O3 nanoparticle treated cells at 6 h. 

As can be seen in Figure 6, CoO nanoparticles had significantly elevated gene expression of 

PTGS2(COX2), SOD3, and MT3 at either 25 or 50 μg/ml after 6 h compared with La2O3-

treated SAEC. The gene expression of NOS2 is decreased compared with the DM CTRL at 

both 25 and 50 μg/ml for both nanoparticles assayed; however, NOS2 expression is further 

decreased at 50 μg/ml in cells treated with La2O3 nanoparticles when comparing to cells 

treated with CoO nanoparticles. There were no significant changes seen between cells 

treated with either CoO or La2O3 nanoparticles at the various exposure doses at 6 or 24 h in 

expression of AKT1, BCL2, p53, HIf1α, SOD1, SOD2, or TXNRD1 (data not shown). After 

24 h post exposure, there were no significantly changes observed in the gene expressions 

(data not shown). There were also no significant changes seen in SAEC-treated cells at 5 

μg/ml of either CoO or La2O3 nanoparticles (data not shown). These data demonstrated that 

CoO and La2O3 nanoparticles induce different gene expression profiles in SAEC, suggesting 

that they activate different molecular pathways.
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Induction of HIF-1α Due to CoO Nanoparticle

To explore the potential cellular mechanisms that could play a key role in CoO and La2O3 

nanoparticle induced cytotoxicity, HIF-1α protein expression was examined after 6 h 

treatment of CoO and La2O3 nanoparticles in SAEC. HIF-1α gene expression did not show 

any significant changes when measured; however, the transcription factor is well known to 

be regulated translationally (Wenger, 2000). As seen in Figure 7, CoO nanoparticles induced 

HIF-1α expression at all doses analyzed (5, 25 and 50 μg/ml) when compared with DM 

control and La2O3 nanoparticles. No detectable HIF-1α expression was seen in the DM or 

La2O3 nanoparticle samples examined at any dose (5, 25, or 50 μg/ml). Taken together these 

data indicate that CoO nanoparticles may induce cytotoxicity through the induction of 

HIF-1α protein expression.

DISCUSSION

CoO nanoparticles are used in a wide variety of applications such as a drying agent for oil 

paints, varnishes, magnetic toners, and inks. They are fundamentally important for 

manufacturing rechargeable batteries, magnets and wave shielding for cellular phones. CoO 

nanoparticles have also been used in propane gas as an oxidizing agent, as well as, a 

contrasting agent in magnetic resonance imaging (MRI) machines. La2O3 nanoparticles have 

been incorporated and used for the following purposes: high refractive optical fibers, 

agricultural films, automobile exhaust catalyst, electroforming electrode materials, as an 

anti-corrosion, to reduce electrode wear, and as a magnet for magnetic storage and within a 

MRI machine. La2O3 nanoparticles are also used within optical glass, for nano-optical 

conversion efficiency and to chemically improve the burning rate of propellants. Due to the 

large presence of these particles in various occupations, it is important to study the potential 

toxicological effects of both La2O3 and CoO nanoparticles on the exposed individuals.

The results of this study demonstrate that different toxicological modes of action are 

involved in CoO and La2O3 nanoparticle-induced cell toxicity in SAEC. Furthermore, this 

study examines the actual delivered mass to SAEC after equal administrated doses. As seen 

in this study, the delivered doses are not equivalent to the administrated doses and upon 

using the VCM-ISDD, it was determined that fewer CoO nanoparticles were needed to 

produce cytotoxicity than La2O3 nanoparticles. Within this study, gene expression was 

examined to determine specific molecular pathways that were activated within SAEC after 

treatment with CoO and La2O3 nanoparticles. Both CoO and La2O3 nanoparticles were able 

to be engulfed by SAEC at the various doses administered. Using the VCM-ISDD, it was 

determined that a smaller amount of CoO nanoparticles was delivered to the cells at all doses 

when compared with La2O3 delivered mass. However, when comparing cell viability after 

treatment, CoO nanoparticles were considered more cytotoxic at the same administered 

dose, indicating that less CoO nano-particles are needed to cause equivalent amounts of 

cytotoxicity to that induced by La2O3 nanoparticles. SAEC treated with 25.0 and 50.0 μg/ml 

CoO nanoparticles produced more ROS and were more cytotoxic at both 6 and 24 h in 

comparison to La2O3 nanoparticles. CoO nanoparticles increased the global tyrosine and 

threonine phosphorylation footprint in SAEC to a higher degree than La2O3 nanoparticles. 
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Moreover, several genes related to oxidative stress were induced in SAEC exposed to CoO 

nanoparticles in comparison to La2O3 nanoparticles.

It has been proposed that the evaluation of the physico-chemical properties of metal oxide 

nanoparticles could predict their toxicity. However, a knowledge gap exists regarding the 

association between the unique physicochemical properties of such metal oxide 

nanoparticles and their toxicological profile. Several published studies have shown that a 

difference in the band energy of metal oxide nanoparticles could be used to predict their 

potential ROS production (Burello and Worth, 2011a,b; Zhang et al., 2012). CoO 

nanoparticles are known to have an overlapping redox potential with cells, indicative of 

higher ROS induction potential, while La2O3 nanoparticles do not have such overlapping 

redox potential and thus have a lower ROS induction potential (Zhang et al., 2012). It is also 

known that CoO and La2O3 nanoparticles are insoluble at a neutral pH and will only 

dissolve in acidic conditions.

Analysis of the metal oxide suspensions of CoO and La2O3 nanoparticles revealed both 

particle systems differed in the hydrodynamic diameter when suspended in the cellular 

media used in this study. The CoO nanoparticle suspension was six times smaller than that 

of La2O3 nanoparticles; however, other parameters such as polydispersity, zeta potential and 

effective density were very similar across both suspensions. The difference in the 

agglomerate structure size consequently led to a drastic difference in the settling rate of the 

particles administered to the cells, with CoO nanoparticles depositing at a much lower rate 

than La2O3 nanoparticles For 90% of the administered dose of CoO and La2O3 

nanoparticles to deposit, it would take an approximate of 43 and 3 h, respectively, in both 

experimental plates used in the study. Therefore, while the administered and cell delivered 

mass of La2O3 nanoparticles are equal, 85% of the administered CoO nanoparticles is the 

delivered mass after 3 h exposure. In spite of this lower delivered mass, CoO nanoparticles 

were more bioactive than La2O3 nanoparticles. When comparing the production of 

superoxide radicals with the multiple doses of CoO to La2O3 nanoparticles at both 6 and 24 

h, the data suggest that CoO nanoparticles produce more ROS measured by DCFDA at both 

25 and 50 μg/ml at both 6 and 24 h. These data correlate with the cytotoxicity MTS assay, 

which showed CoO nanoparticles were more toxic at both 25 and 50 μg/ml administered 

doses at both 6 and 24 h in comparison to La2O3 nanoparticles. ROS are a collective term 

for the intermediates formed during oxidative metabolism. Superoxide radicals (O2
−) are a 

member of ROS, and the others include hydrogen peroxide (H2O2), hydroxyl radical (−OH), 

and peroxynitrite (ONOO−). All of these have been shown to induce cellular injury through 

DNA damage, protein oxidation, lipid peroxidation, cell growth, differentiation, and death 

alteration, as well as, cell signal transduction activation (Qian et al., 2003). It has been 

demonstrated that nanoparticle-induced ROS production is related to alter molecular 

mechanisms that can lead to cytotoxicity, inflammation, fibrosis, and potentially 

tumorigenesis (Nel et al., 2006). Several metal oxide nanoparticles have been demonstrated 

to induce cytotoxicity through the production of ROS production (Nel et al., 2006; Schrand 

et al., 2010; Xie et al., 2011). Taken together, this suggests that CoO nanoparticles produce 

more ROS leading to alterations in molecular pathways that lead to cytotoxicity. This could 

be due to an overlap of redox potential between CoO nanoparticles and ambient redox-active 

Sisler et al. Page 11

Toxicol Sci. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aqueous substances, leading to the electrons transferred between CoO nanoparticles and the 

cellular redox couples to induce ROS.

Tyrosine and threonine phosphorylation of proteins is the key step in activation of many 

cellular processes (Hunter, 1995; Marshall, 1995). In response to extracellular signals, 

protein phosphorylation occurs and leads to protein complex assembly and activation or 

inactivation of cellular signals (Pawson, 2004). It is well established that the changes in 

protein tyrosine and threonine phosphorylation play an essential role in cell proliferation, 

cell cycle progression, metabolic homeostasis, and transcriptional activation (Hunter, 1995; 

Macho et al., 2015; Pawson, 2004; Schlessinger, 2014). The alteration of tyrosine/threonine 

phosphorylation is directly related to many human diseases, particularly cancer (Hunter, 

1995). Changes in either tyrosine or threonine phosphorylation due to nanoparticle exposure 

can alter the cellular bioactivity on a global scale, as shown previously by our group 

(Mihalchik et al., 2015). Our results suggest that there is a trend of larger global changes in 

both tyrosine and threonine phosphorylation in the CoO nanoparticle-treated cells in 

comparison to those treated with La2O3 nanoparticles. These data are significant because 

many molecular pathways activated by tyrosine and threonine phosphorylation play a role 

within cytotoxic pathways.

Induction of ROS within mammalian cells after exposure to nanomaterial tends to activate 

cellular antioxidant defenses, which can reduce oxidative stress in turn and induce the over-

expression of many related genes. Moreover, ROS-induced DNA damage leads to gene 

expression alterations (Rahal et al., 2014; Sarkar et al., 2014; Xie et al., 2011). After 

analyzing the profiles of gene expression following treatment of CoO or La2O3 

nanoparticles, the data show that several genes related to oxidative stress (MT3, NOS2, 

PTGS2(Cox2), and SOD3) are elevated within cells treated with CoO nanoparticles at 6 h. 

MT3 is important in the cell for the removal of metals (Lee and Koh, 2010). NOS2 is needed 

for the synthesis of nitric oxide, which is a superoxide radical (Attia et al., 2015; Colasanti 

and Suzuki, 2000). SOD3, superoxide dismutase, plays a key role in removing superoxide 

radicals within a cellular system where there is an over production of superoxide radicals 

(Fukai and Ushio-Fukai, 2011). PTGS2(Cox2) is a gene that is related to the antioxidant 

defense system within cellular oxidative stress (Luo et al., 2011). These results suggest that 

CoO nanoparticles activate oxidative stress pathways within the SAEC when compared with 

SAEC dosed with La2O3 nanoparticles. However, since there is cytotoxicity seen in SAEC 

treated with La2O3 nanoparticles, it is possible that some cytotoxic pathways other than 

oxidative stress are playing a role in the bioactivity of La2O3 nanoparticles.

ROS production induces alteration in oxygen homeostasis which is regulated by a key 

transcription factor, HIF-1α (Kaewpila et al., 2008; Wenger, 2000). Since ROS were induced 

by CoO nanoparticles within SAEC at 25 and 50 μg/ml at 6 h and there were altered gene 

expression related to oxidative stress at 6 h, HIF-1α protein expression was analyzed. 

Results showed HIF-1α protein expression was induced by CoO nanoparticles at all doses 

analyzed at 6 h, suggesting a HIF-1α dependent molecular mechanism is involved in CoO 

nanoparticle-induced cytotoxicity. Taken together, this study suggests that different 

toxicological modes of action are involved in CoO and La2O3 nanoparticle-induced toxicity 

in SAEC, which could be due to the difference of their physio-chemical properties, such as 
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their band gap energy levels. CoO nanoparticles are more toxic than La2O3 nanoparticles in 

SAEC due to the activation of the different molecular signaling evidenced by the significant 

ROS production, tyrosine and threonine phosphorylation and gene expression observed in 

the cells post treatment, CoO nanoparticles also induce the protein expression of HIF-1α 

which could lead to a possible molecular mechanism for the CoO nanoparticle induced 

cytotoxicity in the SAEC that was not seen with the treatment of La2O3 nanoparticles. It will 

be of interest in the future to determine if CoO and La2O3 nanoparticle exposure in an in 
vivo experimental model leads to different profiles of inflammation and possibly lung 

fibrosis.
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FIG. 1. 
Fraction deposited of cobalt monoxide (CoO) nanoparticles and lanthanum oxide (La2O3) 

nanoparticles as a function of time. Fractions deposited were calculated using the estimated 

effective density. Plots are presented for the nanoparticles suspeSnded in SABM. The fD for 

CoO nanoparticles is 0.8 and La2O3 nanoparticles is 1.0 for a 24-h in vitro exposure duration 

in both a 6- and 96-well exposure condition.
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FIG. 2. 
SAEC engulf CoO and La2O3 nanoparticles. SAEC were treated for either 6 or 24 h with 

(A) CoO or (B) La2O3 nanoparticles at 0.0, 5.0, 25.0, or 50.0 ug/ml administered dose. 

SAEC were then fixed with Karnovsky’s fixative, stained with osmium and imaged with a 

transmission electron microscope. Particles are identified with arrows. Images represent n = 

3.
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FIG. 3. 
Cytotoxicity of CoO and La2O3 nanoparticles. SAEC were treated with 0.0 5.0, 25.0, or 50.0 

μg/ml administered dose of CoO or La2O3 nanoparticles for 6 or 24 h. A, The cells were 

then assayed using an MTS assay. Delivered mass of CoO and La2O3 nanoparticles at (B) 6 

h and (C) 24 h and the respective linear fit line. The slope of the fit line is used in 

determining the change in percent viability per unit of delivered mass specific to each 

nanoparticle treatment. Values represent the percent cell viability with n = 3, * indicates P 
< .05 compared to 0.0 μg/ml control. + indicates P < .05 compared to La2O3 at same time 

point.
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FIG. 4. 
SAEC Production of ROS by CoO and La2O3 nanoparticles. SAEC were treated for 6 or 24 

h with CoO or La2O3 nanoparticles with the following doses: 0.0, 5.0, 25.0, and 50.0 μg/ml 

and for the last 30 min 5 μM DCFDA was added to analyze superoxide production. 

Fluorescence was measured using a plate reader. Values were normalized to 0.0 μg/ml 

control ± Standard error. n = 3, * indicates P < .05 compared to 0.0 μg/ml control. + 

indicates P < .05 compared to La2O3 nanoparticles.
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FIG. 5. 
Increase in total tyrosine and threonine phosphorylation. Whole cell lysates were collected 

from SAEC at both (A) 6 h and (B) 24 h treated with 0.0, 5.0, 25.0, or 50.0 μg/ml 

administered dose of CoO or La2O3 nanoparticles. Western blotting was used to detect 

changes in total tyrosine phosphorylation and total threonine phosphorylation. Beta Actin 

was used for internal control within the samples. Western blots are representative of n = 3.
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FIG. 6. 
Alteration in gene expression in SAEC due to CoO and La2O3 nanoparticles. cDNA 

generated from RNA was isolated from SAEC treated with 0.0, 5.0, 25.0, and 50.0 μg/ml 

administered dose for 6 h with CoO and La2O3 nanoparticles. cDNA was then assayed with 

TaqMan qRTPCR for the following genes: (A) NOS2, (B) MT3, (C) PTGS2(COX2), and 

(D) SOD3. Samples were normalized to internal control 18 s. The values represent a fold 

induction compared to 0.0 μg/ml control (1.0). n = 3, * indicates P < .05 compared to La2O3 

nanoparticles at the same administered dose.
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FIG. 7. 
Induction of HIF-1α due to CoO nanoparticles. Whole cell lysates were collected from 

SAEC at 6 h with 0.0, 5.0, 25.0, or 50.0 μg/ml administered dose of CoO or La2O3 

nanoparticles. Western blotting was used to detect changes in HIF-1α protein expression. 

Beta Actin was used for internal control within the samples. Western blots are representative 

of n = 3.
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TABLE 2

Delivered Dose Metrics for CoO and La2O3 Nanoparticle Suspensions in SABM

Material 6-Well Plate 96-Well Plate

α (h−1) t90 (h) α (h−1) t90 (h)

CoO 0.0546 42.18 0.0521 44.18

La2O3 0.910 2.53 0.7672 3.00

α (h−1): deposition fraction constant; t90 (h): time for delivery of 90% of administered dose (h).
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TABLE 3

RID Functions for CoO and La2O3 Nanoparticle Suspensions in SABM for an Exposure Duration of 24 h and 

an Administered Dose of 50.0 μg/ml

6-Well Plate 96-Well Plate

Material CoO La2O3 CoO La2O3

RIDM (μg) 52.58 150 3.57 5.00

RIDN (number of particles) 3.52 × 1015 5.94 × 1013 2.39 × 1014 1.98 × 1012

RIDSA (cm2) 7.70 × 106 4.72 × 106 5.52 × 105 1.57 × 105
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